Муниципальное казенное общеобразовательное Бутаковская средняя общеобразовательная школа

Карточки для индивидуальной работы по ликвидации пробелов в знаниях при подготовке к ОГЭ по математике

Составитель: учитель математики А.П. Павлова

Тема:	Код 2.5 ПЭС: Арифметический корень натуральной степени. Действия с арифметическими
Вариант 1	корнями натуральной степени
Теоретический	Определение: Арифметическим квадратным корнем из числа а называется неотрицательное число,
материал:	квадрат которого равен а.
	Это число обозначают \sqrt{a} , число <u>а</u> при этом называют <i>подкоренным выражением</i> .
	Пример: $\sqrt{9} = 3$; $\sqrt{1,69} = 1,3$; $\sqrt{0} = 0$; $\sqrt{1} = 1$.
	Равенство $\sqrt{a} = b$ является верным, если выполняются два условия: 1) $b \ge 0$, $2) b^2 = a$.
	При а < 0 выражение \sqrt{a} не имеет смысла. Не имеют смысла выражения $\sqrt{-36}$; $\sqrt{-2,7}$.
	$\sqrt{25} = 5$, $\tau \cdot \kappa \cdot 5 \ge 0$, $5^2 = 25$.
	Свойства квадратного корня
	1) Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных
	корней из этих чисел. $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ при $a \ge 0$, $b \ge 0$,
	2) Квадратный корень от частного двух неотрицательных чисел равен частному квадратных корней из этих
	$a \sqrt{a}$
	чисел. $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ при $a \ge 0$, $b > 0$,
	$ a _{3} \sqrt{a^2} = a _{4} (\sqrt{a})^2 = a, a = 0$
Образец:	1) $7\sqrt{3} \cdot 5\sqrt{2} \cdot \sqrt{6} = 7 \cdot 5\sqrt{3 \cdot 2 \cdot 3 \cdot 2} = 35 \cdot 3 \cdot 2 = 175$
	$2)\sqrt{(-2)^6} = \left -2\right ^3 = 8$
	$2)\sqrt{(-2)^6} = -2 ^3 = 8$ $3)\frac{\sqrt{32}}{\sqrt{2}} = \sqrt{16} = 4$
	$4)\left(2\sqrt{5}\right)^2 = 4 \cdot 5 = 20$
	$5)\sqrt{5\cdot 2^2}\cdot \sqrt{5\cdot 3^4} = \sqrt{5^2\cdot 2^2\cdot 3^4} = 5\cdot 2\cdot 3^2 = 10\cdot 9 = 90$
	6) $\frac{16x - 9y}{4\sqrt{x} - 3\sqrt{y}} - 7\sqrt{y} = \frac{\left(4\sqrt{x} - 3\sqrt{y}\right) \cdot \left(4\sqrt{x} + 3\sqrt{y}\right)}{4\sqrt{x} - 3\sqrt{y}} - 7\sqrt{y} = 4\sqrt{x} + 3\sqrt{y} - 7\sqrt{y} = 4\sqrt{x} - 4\sqrt{y} = 4\left(\sqrt{x} - \sqrt{y}\right) = 4 \cdot 2 = 8$
	7) $(2+\sqrt{7})(2-\sqrt{7})=2^2-(\sqrt{7})^2=4-7=-3$
	$8)(\sqrt{27} + \sqrt{3}) \cdot \sqrt{3} = \sqrt{81} + \sqrt{9} = 9 + 3 = 12$
	9) $(\sqrt{2}+3)^2 - 6\sqrt{2} = (\sqrt{2})^2 + 2\sqrt{2} \cdot 3 + 3^2 - 6\sqrt{2} = 2 + 6\sqrt{2} + 9 - 6\sqrt{2} = 11$

Выполните	
самостоятельно	

- 1)Найдите значение выражения $5\sqrt{11} \cdot 2\sqrt{2} \cdot \sqrt{22}$
- 2) Вычислить $\sqrt{0,36 \cdot 144}$
- 3) $\sqrt{(-6)^4}$
- 5) Вычислить $\left(2\sqrt{3}\right)^2$
- 6) Вычислить $\sqrt{11 \cdot 2^2} \cdot \sqrt{11 \cdot 3^4}$
- 7) Найдите значение выражения: $\frac{4x 25y}{2\sqrt{x} 5\sqrt{y}} 3\sqrt{y}$, если $\sqrt{x} + \sqrt{y} = 4$
- $\frac{\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)}{\left(\sqrt{18}+\sqrt{2}\right)\cdot\sqrt{2}}$ 8) Вычислить
- 9) Вычислить
- 10) Найдите значение выражения: $(\sqrt{15} + 3)^2 6\sqrt{15}$

Тема:	Код 2.5 ПЭС: Арифметический корень натуральной степени. Действия с арифметическими						
Вариант 2	корнями натуральной степени						
Теоретический	Определение: Арифметическим квадратным корнем из числа а называется неотрицательное число,						
материал:	квадрат которого равен а.						
	Это число обозначают \sqrt{a} , число а при этом называют <i>подкоренным выражением</i> .						
	Пример: $\sqrt{9} = 3$; $\sqrt{1,69} = 1,3$; $\sqrt{0} = 0$; $\sqrt{1} = 1$.						
	Равенство $\sqrt{a} = b$ является верным, если выполняются два условия: 1) $b \ge 0$, 2) $b^2 = a$.						
	При а < 0 выражение \sqrt{a} не имеет смысла. Не имеют смысла выражения $\sqrt{-36}$; $\sqrt{-2.7}$.						
	$\sqrt{25} = 5$, $\tau. \kappa. 5 \ge 0$, $5^2 = 25$.						
	Свойства квадратного корня						
	1) Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных						
	корней из этих чисел. $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ при $a \ge 0$, $b \ge 0$,						
	2) Квадратный корень от частного двух неотрицательных чисел равен частному квадратных корней из этих						
	чисел. $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ при $a \ge 0$, $b > 0$, $\sqrt{a^2} = a $ 4) $(\sqrt{a})^2 = a, a = 0$						
0.5	3) $(\sqrt{a}) = a, a = 0$ 1) $7\sqrt{3} \cdot 5\sqrt{2} \cdot \sqrt{6} = 7 \cdot 5\sqrt{3} \cdot 2 \cdot 3 \cdot 2 = 175$						
Образец:	,						
	$ 2)\sqrt{(-2)^6} = -2 ^5 = 8$						
	$2)\sqrt{(-2)^6} = -2 ^3 = 8$ $3)\frac{\sqrt{32}}{\sqrt{2}} = \sqrt{16} = 4$						
	$(4)(2\sqrt{5})^2 = 4 \cdot 5 = 20$						
	$4) (2\sqrt{5})^{2} = 4 \cdot 5 = 20$ $5) \sqrt{5 \cdot 2^{2}} \cdot \sqrt{5 \cdot 3^{4}} = \sqrt{5^{2} \cdot 2^{2} \cdot 3^{4}} = 5 \cdot 2 \cdot 3^{2} = 10 \cdot 9 = 90$						
	6) $\frac{16x - 9y}{4\sqrt{x} - 3\sqrt{y}} - 7\sqrt{y} = \frac{\left(4\sqrt{x} - 3\sqrt{y}\right) \cdot \left(4\sqrt{x} + 3\sqrt{y}\right)}{4\sqrt{x} - 3\sqrt{y}} - 7\sqrt{y} = 4\sqrt{x} + 3\sqrt{y} - 7\sqrt{y} = 4\sqrt{x} - 4\sqrt{y} = 4\left(\sqrt{x} - \sqrt{y}\right) = 4 \cdot 2 = 8$						
	7) $(2+\sqrt{7})(2-\sqrt{7})=2^2-(\sqrt{7})^2=4-7=-3$						
	$8)(\sqrt{27} + \sqrt{3}) \cdot \sqrt{3} = \sqrt{81} + \sqrt{9} = 9 + 3 = 12$						
	9) $(\sqrt{2}+3)^2 - 6\sqrt{2} = (\sqrt{2})^2 + 2\sqrt{2} \cdot 3 + 3^2 - 6\sqrt{2} = 2 + 6\sqrt{2} + 9 - 6\sqrt{2} = 11$						

Выполните
самостоятельно

- 1)Найдите значение выражения $7\sqrt{13} \cdot 2\sqrt{2} \cdot \sqrt{26}$
- 2) Вычислить $\sqrt{0,49 \cdot 121}$
- 3) $\sqrt{(-7)^4}$
- $4)\frac{\sqrt{125}}{\sqrt{5}}$
- 5) Вычислить $\left(3\sqrt{2}\right)^2$
- 6) Вычислить $\sqrt{13 \cdot 3^2} \cdot \sqrt{13 \cdot 2^4}$
- 7) Найдите значение выражения: $\frac{9x-16y}{3\sqrt{x}-4\sqrt{y}} \sqrt{y}$, если $\sqrt{x} + \sqrt{y} = 4$
- $\frac{\left(7 + \sqrt{2}\right)\left(7 \sqrt{2}\right)}{\left(\sqrt{32} + \sqrt{2}\right) \cdot \sqrt{2}}$ 8) Вычислить
- 9) Вычислить
- 10) Найдите значение выражения: $(\sqrt{13} + 2)^2 4\sqrt{13}$

Тема: Вариант 1	Код 2.2 ПЭС: Степень с целым показателем. Степень с рациональным показателем. Свойства степени				
Теоретический материал:	1) При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.				
in a primary	$a^n \cdot a^m = a^{n+m}$				
	2) При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя. $a^n : a^m = a^{n-m}$				
	3) При возведении степени в степень основание оставляют тем же, а показатели перемножают. $ (a^n)^m = a^{n \cdot m} $				
	4) Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй в знаменателе дроби. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$				
	5) Чтобы возвести в степень произведение, нужно каждый множитель возвести в эту степень и результаты перемножить $ (a \cdot b)^n = a^n \cdot b^n $				
	6) Число, возводимое в целую отрицательную степень, равно единице, деленной на это число, возводимое в положительную степень $a^{-n} = \frac{1}{a^n}$				
	7) Чтобы возвести дробь в отрицательную степень, нужно заменить эту дробь на дробь обратную данной (« перевернуть») и возвести в эту же степень с положительным знаком $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}}$				
	8) $a^1 = a$ 9) $a^0 = 1$				
Образец:	1) $4^{-3} \cdot 4^{5} = 4^{-3+5} = 4^{2} = 16$ 2) $5^{10} : 5^{8} = 5^{10-8} = 5^{2} = 25$ 3) $(2^{-3})^{2} = 2^{-3 \cdot 2} = 2^{-6}$ 4) $3^{-3} = \frac{1}{3^{3}} = \frac{1}{27}$ $3 \cdot 10^{-1} + 1 \cdot 10^{-2} + 5 \cdot 10^{-4} = 3 \cdot 0, 1 + 1 \cdot 0, 01 + 5 \cdot 0, 0001 = 0, 3 + 0, 01 + 0, 0005 = 0, 3105$ 5) $(4, 9 \cdot 10^{-3})(4 \cdot 10^{-2}) = 4, 9 \cdot 4 \cdot 10^{-3} \cdot 10^{-2} = 19, 6 \cdot 10^{-5} = 0,000196.$				
	$\begin{array}{c} 5) \\ 6) \end{array} (4.9 \cdot 10^{-3}) (4 \cdot 10^{-2}) = 4.9 \cdot 4 \cdot 10^{-3} \cdot 10^{-2} = 19.6 \cdot 10^{-5} = 0.000196. \end{array}$				

	7) $(-2 \cdot a^{-2} \cdot B^3)^2 == (-2)^2 \cdot (a^{-2})^2 \cdot (B^3)^2 = 4 \cdot a^{-4} \cdot B^6$
	7) $(-2 \cdot a^{-2} \cdot B^{3})^{2} == (-2)^{2} \cdot (a^{-2})^{2} \cdot (B^{3})^{2} = 4 \cdot a^{-4} \cdot B^{0}$ 8) $\left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^{2} = \frac{4^{2}}{1^{2}} = 16$ 9) $\frac{1}{4^{-10}} \cdot \frac{1}{4^{9}} = \frac{1}{4^{-10} \cdot 4^{9}} = \frac{1}{4^{-1}} = 4$. 10) $\frac{24^{4}}{3^{2} \cdot 8^{3}} = \frac{3^{4} \cdot 8^{4}}{3^{2} \cdot 8^{3}} = 8 \cdot 3^{2} = 72$.
	$\frac{27}{3^2 \cdot 8^3} = \frac{3}{3^2 \cdot 8^3} = 8 \cdot 3^2 = 72.$
	$a^8 \cdot a^{17} \colon a^{20} = a^{8+17-20} = a^5.$
Выполните	Найдите значение выражения
самостоятельно	$3^8 \cdot 3^5$
	1) $3^{-12}*(3^7)^2$ 2) $3^{\frac{3^7}{81}}$ $\frac{1}{1}$ $\frac{1}{1}$
	3) $\frac{\frac{5}{81}}{\frac{1}{1} \cdot \frac{1}{1}}$
	4) $\frac{2^{-19}}{21^4}$, $\frac{2^{16}}{2^2 \cdot 7^3}$
	5) $3^2 \cdot 7^3$
	6) Найдите значение выражения $a^{13}*a^{11}:a^{21}$ при $a=4$.
	7) Найдите значение выражения $\frac{(a^7)^2}{a^{12}}$ при $a=5$
	8) Найдите значение выражения $\frac{2^{-3} * 2^{19}}{2^{13}}$
	9) Найдите значение выражения $\frac{(a^9)^3 * a^7}{a^{29}}$ при $a=2$.
	10) Найдите значение выражения $5 \cdot 10^{-1} + 6 \cdot 10^{-2} + 4 \cdot 10^{-4}$.

Тема:	Код 2.2
Вариант 2	ПЭС: Степень с целым показателем. Степень с рациональным показателем. Свойства степени
Теоретический	1) При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели
материал:	степеней складывают.
	$a^n \cdot a^m = a^{n+m}$
	2) При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя
	степени делимого вычитают показатель степени делителя.
	$a^n:a^m=a^{n-m}$
	3) При возведении степени в степень основание оставляют тем же, а показатели перемножают. $ (a^n)^m = a^{n \cdot m} $
	4) Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый
	результат записать в числителе, а второй в знаменателе дроби. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
	5) Чтобы возвести в степень произведение, нужно каждый множитель возвести в эту степень и результаты перемножить $ (a \cdot b)^n = a^n \cdot b^n $
	6) Число, возводимое в целую отрицательную степень, равно единице, деленной на это число,
	возводимое в положительную степень $a^{-n} = \frac{1}{a^n}$
	7) Чтобы возвести дробь в отрицательную степень, нужно заменить эту дробь на дробь обратную
	данной (« перевернуть») и возвести в эту же степень с положительным знаком
	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$
	$8) a^1 = a$
	8) $a^1 = a$ 9) $a^0 = 1$
Образец:	1) $4^{-3} \cdot 4^5 = 4^{-3+5} = 4^2 = 16$ 2) $5^{10} \cdot 5^8 = 5^{10-8} = 5^2 = 25$ 3) $(2^{-3})^2 = 2^{-3 \cdot 2} = 2^{-6}$
	2) 5^{10} : $5^8 = 5^{10-8} = 5^2 = 25$
	3) $(2^{-3})^2 = 2^{-3 \cdot 2} = 2^{-6}$
	4) $3^{-3} = \frac{1}{3^3} = \frac{1}{27}$

$3 \cdot 10^{-1} + 1 \cdot 10^{-2} + 5 \cdot 10^{-4} = 3 \cdot 0, 1 + 1 \cdot 0, 01 + 5 \cdot 0, 0001 = 0, 3 + 0, 01 + 0, 0005 = 0, 3105$
3)
$6) (4,9 \cdot 10^{-3})(4 \cdot 10^{-2}) = 4,9 \cdot 4 \cdot 10^{-3} \cdot 10^{-2} = 19,6 \cdot 10^{-5} = 0,000196.$
6) $(4,5,10)$ $(4,10$
•)

7)
$$(-2 \cdot a^{-2} \cdot B^3)^2 == (-2)^2 \cdot (a^{-2})^2 \cdot (B^3)^2 = 4 \cdot a^{-4} \cdot B^6$$

7)
$$(-2 \cdot a^{-2} \cdot B^{3})^{2} == (-2)^{2} \cdot (a^{-2})^{2} \cdot (a^{-2$$

$$\frac{24^4}{3^2 \cdot 8^3} = \frac{3^4 \cdot 8^4}{3^2 \cdot 8^3} = 8 \cdot 3^2 = 72.$$

11)
$$a^8 \cdot a^{17} : a^{20} = a^{8+17-20} = a^5.$$

Выполните самостоятельно

Найдите значение выражения

1)
$$\frac{2^6 * 2^8}{2^9}$$

2)
$$5^{-9}*(5^3)^4$$

3)
$$\frac{3^7}{27}$$

4)
$$\frac{1}{3^{-15}} * \frac{1}{3^{12}}$$

5)
$$\frac{15^4}{3^2 * 5^3}$$

6) Найдите значение выражения $a^{12}*a^{13}:a^{22}$ при a=4.

7) Найдите значение выражения
$$\frac{(a^4)^3}{a^{10}}$$
 при $a=5$

8) Найдите значение выражения
$$\frac{3^{-3}*3^{16}}{3^{10}}$$

9) Найдите значение выражения
$$\frac{(a^6)^3 * a^5}{a^{20}}$$
 при $a=2$.

Тема:	Код 3.1 ПЭС: Целые и дробно-рациональные уравнения					
Вариант 1						
Теоретический						
материал:	Корнем уравнения называется значение переменной, при подстановке которого в уравнение получается верное равенство. Пример: 2x-8=0 x=4	Линейные уравнения (приводимые к виду $\mathbf{a}\mathbf{x} = \mathbf{b}$): если $a \neq 0$, то $\mathbf{x} = -\frac{b}{a}$; если $a = b = 0$, то бесконечное множество корней; если $a = 0$, $b \neq 0$, то решений нет.	Квадратные уравнения и приводимые к виду $ax^2 + bx + c = 0$, $a \neq 0$ Если D < 0, корней нет; Если D=0, один корень $x_{12} = \frac{-b}{2a}$ Если D> 0, два корня $x_{12} = \frac{-b \pm \sqrt{D}}{2a}$	ура $ax^{2} + c$ если реше есл , то x $ax^{2} + b$ $x(ax+b) = x$	е квадратное внение: $c = 0$, $b = 0$ ac<0, то ений нет; ли ас>0 $c = \sqrt{-\frac{c}{a}}$ $c = \sqrt{-\frac{c}{a}}$ $c = 0$ два корня: $c = $	Уравнение вида $\frac{M(x)}{N(x)} = 0$, где $M(x)$ и $N(x)$ — многочлены, называется дробнорациональным. Решают с использованием равносильного перехода и условия равенства дроби нулю $\frac{M(x)}{N(x)} = 0$ $\Leftrightarrow \{ \begin{array}{c} M(x) = 0 \\ N(x) \neq 0 \end{array} \right.$
Образец:	Решите уравнение: 10 (х — 6) = 7 раскроем скобки: 10х — 60 = 7 переносим 60 в правую часть (не забываем поменять знак): 10х = 7 + 60 10х = 67 Затем делим обе части на 10: х = 6,7 Ответ: 6,7		Решите уравнение: $4 x^2 + 12 x = 0$. В ответе укажите наименьший корень. Это неполное квадратное уравнение, в котором нужно вынести х за скобку: $x (4 x + 12) = 0$ Произведение множителей тогда равно нулю, когда хотя бы один из множителей равен нолю: $x = 0$ или $4 x + 12 = 0$ $4 x = -12$ $x = -3$		Решите уравнение: $8 x^2 - 10x = -2$ В ответе укажите наименьший корень. $8 x^2 - 10x + 2 = 0$ $D = b^2 - 4ac = 5^2 - 4 \cdot 4 \cdot 1 = 9$ $x = \frac{-b - \sqrt{D}}{2a} = (5 - 3)/2 \cdot 4 = 0,25$ $x = \frac{-b + \sqrt{D}}{2a} = (5 + 3)/2 \cdot 4 = 1$ Ответ: 0,25	

	Решите уравнение: $\frac{1}{x+8} = 2$ Решение:	Ответ: -3 Решите уравнение: $(5x-4) \cdot (x+8) = 0$ Решение	Решите уравнение: $\frac{5}{1-x} = \frac{4}{6-x}.$
	Исключим корень, который не входит в ОД3: $x+8\neq 0 \rightarrow x\neq -8$. $\frac{1}{x+8} = \frac{2}{1}$ Применим правило пропорции. Перемножим между собой крайние ее члены и средние: $1\cdot 1=(x+8)\cdot 2$ $1=2x+16$ $2x+16=1$	5x-4=0 или $x+8=0$; 5x=4; $x=-8$. x=4:5; x=0,8; Ответ: $-8;0,8$.	Решение О.Д.3. уравнения $1-x$ 0; x 1, $6-x$ 0; x 6. $5 \cdot (6-x) = 4 \cdot (1-x)$; $30-5x=4-4x$; $-5x+4x=4-30$; $-x=-26$; $x=26$. Ответ: 26.
Выполните	2x=1-16 2x=-15 x=-15/2=-7,5 Ответ: -7,5	ее одного корня.	

самостоятельно

в ответ запишите больший из корней.

1)
$$\frac{x}{5} - \frac{x}{2} = -3$$

2)
$$4x - 5.5 = 5x - 3(2x - 1.5)$$

$$3x^2 - 12x = 0$$

$$4) \qquad 3x^2 - 15 = 0$$

$$5) \quad 5x^2 - 3x - 2 = 0$$

6)
$$x(x+2) = 3$$

2)
$$4x - 5,5 = 5x - 3(2x - 1,5)$$

3) $3x^2 - 12x = 0$
4) $3x^2 - 15 = 0$
5) $5x^2 - 3x - 2 = 0$
6) $x(x + 2) = 3$
7) $(x + 5)(2x - \frac{1}{3}) = 0$

$$8) \qquad \frac{3}{x-6} = \frac{2}{2x-9}$$

$$\frac{x-3}{2} + \frac{x-1}{3} = 5$$

$$10$$
) $2x^2 - 8 = 0$

Тема:	Код 3.1 ПЭС: Целые и дробно-рациональные уравнения					
Вариант 2						
Теоретический материал:	Корнем уравнения называется значение переменной, при подстановке которого в уравнение получается верное равенство. Пример: 2x-8=0 x=4	Линейные уравнения (приводимые к виду $\mathbf{ax=b}$): если $\mathbf{a}\neq 0$, то $\mathbf{x}=-\frac{b}{a}$; если $\mathbf{a}=\mathbf{b}=0$, то бесконечное множество корней; если $\mathbf{a}=0$, $\mathbf{b}\neq 0$, то решений нет.	Квадратные уравнения и приводимые к виду $ax^2 + bx + c = 0$, $a \neq 0$ Если D < 0, корней нет; Если D=0, один корень $x_{12} = \frac{-b}{2a}$ Если D> 0, два корня $x_{12} = \frac{-b \pm \sqrt{D}}{2a}$	ура $ax^{2} + c$ если реше есл , то x^{2} $ax^{2} + b$ $x(ax+b) = x^{2}$	е квадратное внение: $c = 0$, $b = 0$ ac<0, то ений нет; ни ас>0 $c = 0$ два корня: $c = 0$ два корня: $c = 0$ два корень $c = 0$ сорень $c = 0$ до сорень $c = 0$	Уравнение вида $\frac{M(x)}{N(x)} = 0$, где $M(x)$ и $N(x)$ — многочлены, называется дробнорациональным. Решают с использованием равносильного перехода и условия равенства дроби нулю $\frac{M(x)}{N(x)} = 0$ \Leftrightarrow { $M(x) = 0$ $N(x) \neq 0$
Образец:	Решите уравнение: 10 (х — 6) = 7 раскроем скобки: 10х — 60 = 7 переносим 60 в правую часть (не забываем поменять знак): 10х = 7 + 60 10х = 67 Затем делим обе части на 10: х = 6,7 Ответ: 6,7		Решите уравнение: $4 x^2 + 12 x = 0$. В ответе укажите наименьший корень. Это неполное квадратное уравнение, в котором нужно вынести х за скобку: $x (4 x + 12) = 0$ Произведение множителей тогда равно нулю, когда хотя бы один из множителей равен нолю: $x = 0$ или $4 x + 12 = 0$ $4 x = -12$ $x = -3$ Ответ: -3		Решите уравнение: $8 x^2 - 10x = -2$ В ответе укажите наименьший корень. $8 x^2 - 10x + 2 = 0$ $D = b^2 - 4ac = 5^2 - 4 \cdot 4 \cdot 1 = 9$ $x = \frac{-b - \sqrt{D}}{2a} = (5 - 3)/2 \cdot 4 = 0,25$ $x = \frac{-b + \sqrt{D}}{2a} = (5 + 3)/2 \cdot 4 = 1$ Ответ: 0,25	

самостоятельно в ответ запишите меньший из корней.

1)
$$\frac{x-4}{2} - \frac{x-7}{3} = 3$$

2)
$$3(0.5x - 4) + 8.5x = 18$$

$$3) \qquad 25 - 100x^2 = 0$$

4)
$$3x^2 - 27 = 0$$

$$5) \quad 7x^2 + 9x + 2 = 0$$

$$6) x^2 + 2x = 16x - 49$$

6)
$$x^2 + 2x = 16x - 49$$

7) $2(5x - 7)(1 + x) = 0$

$$8)\frac{x}{2x-3} = \frac{4}{x}$$

$$9) x^2 + 3x = 0$$

$$10)(1-x)^2 + 2x = 2$$

Ответы:

№ 1	1	2	3	4	5	6	7	8	9	10
Вариант 1	220	7,2	36	6	12	198	8	21	8	24
Вариант 2	364	7,7	49	5	18	156	12	45	10	17
№ 1	1	2	3	4	5	6	7	8	9	10
Вариант 1	81	9	27	8	63	64	25	8	32	0,5604
Вариант 2	32	125	81	27	45	64	25	27	8	0,3405
№ 1	1	2	3	4	5	6	7	8	9	10
Вариант 1	10	2	4	$\sqrt{5}$	1	1	-5	3,75	8,2	2
Вариант 2	16	3	-0,5	-3	-1	-1	-1	2,6	-3	-1

Используемая литература:

1). Сборник для подготовки ОГЭ. И.В. Ященко, С.А.Шестаков, А.В. Семенов.

2) Сайт: https://www.fipi.ru

3) Caйт: https://oge.sdamgia.ru/

4) Образовательная платформа «Гиперматика» https://7.math.ru/lesson